In the early 20th Century, an American financial tycoon named Percival Farquhar was the largest private investor in Brazil. Backed by European investors, Farquhar’s syndicate had controlling interest in Brazilian railways, river steamers, ports, and streetcar lines. He dreamed of creating a rail network that would link all corners of South America and open the continent to development. His boldest achievement was the building of the Madeira-Mamoré Railway. In the early 1900s, the development of the automobile industry created a huge demand for rubber for tires. At that time, Brazil was the largest exporter of rubber. With a surplus of rubber and a desire to build railroads, Farquhar cabled his congratulations that his success would lead to even greater ventures.

Rubber was the economic underpinning of the Madeira-Mamoré Railway. In the early 1900s, the development of the automobile industry created a huge demand for rubber for tires. At that time, Brazil was the largest exporter of rubber. With a surplus of rubber and a desire to build railroads, Farquhar cabled his congratulations that his success would lead to even greater ventures.

Bolivia was especially rich in rubber trees, but the landlocked nation had no rail access to Pacific coast ports. It was forced to ship its rubber through Brazil via the Mamoré River, which flows into the Madeira, a major tributary of the Amazon. The Mamoré was navigable for its whole length, but the first 200 miles of the Mamoré was blocked by a series of falls and rapids. This made shipping rubber by boat costly and treacherous. If a railroad could be built from the Mamoré River to the last falls of the Madeira, the problem would be solved, and rubber could be easily shipped down to the Amazon.

In 1907, when Percival Farquhar sized up this opportunity, he saw enormous potential profit in operating such a railroad. He gambled that the threat from Asian rubber was far enough in the future that he could build the railroad with the revenues from the latex. He decided to develop this remote region. Farquhar was willing to go deeply into debt to finance his jungle railroad. He believed it would be considered an American engineering triumph second only to the Panama Canal, which was then being built.

Construction began in August 1907. Surveying parties were sent to plot the line of the railroad from the Madereira and then south along the Rio Mamone, to the starting point of the railroad at Guajará-Mirim. At the eastern end of the line, at Porto Velho, a company town was established as headquarters. Everything had to be built from scratch: a modern hospital, dormitories with wide screened porches, rail yards, and office buildings. A modern port was built to reach the town and its port to the west. Bolivia, provided 90% of the world’s rubber supply. The company was the largest in the region and employed skilled workers. Even the unskilled workers — local Brazilians and laborers from the West Indies, Italy, Germany, and Spain — were paid above average wages.

The working conditions were terrible: torrential rain and mud, enervating heat and humidity, with mosquitoes, spiders, snakes, and scorpions adding to their misery. Hundreds of discouraged workers deserted, some disappearing into the jungle to die. Some were forced to work in the Amazonian region, but they refused to work in the Amazonian region. Their South American railroad holdings evaporated.

In 1911, the railroad reached the halfway point at the Rio Abuna. Bolivian rubber shipments began moving to Porto Velho. Farquhar reported to his investors that the revenues for the year 1911 would be an astounding 140,000 British pounds sterling (equivalent to $33 million in 2012 U.S. dollars). He estimated that revenues for 1912 might more than double that.

On April 30, 1912, the track gangs finally reached the western end of the line.

The Madeira-Mamoré Railway, once considered impossible to build, was now in operation. On September 7, 1912, Railroad officials drove a golden spike to symbolize the great achievement. Farquhar called his congratulations, confident that his success would lead to even greater ventures.

Hevea Brasiliensis — the native Brazilian rubber tree — grows abundantly in the Amazonian region, but the trees are widely-spread in the mixed species forest. Harvesting the rubber involved cutting a diagonal gash in the bark of the tree and attaching a cup to catch the oozing white latex. Rubber gatherers were forced to walk many weary miles each day from tree to tree, to collect the latex in a barrel strapped to their backs. At night, they smoked the latex on open fires to dry it. Each leaf contained about 75 pounds of blackened latex which would then be shipped down the Amazon to the market. The rubber gatherers lived a slave-like existence, were paid a pittance for their labor, and were cheated by storekeepers for supplies. The rubber exporters grew rich on the trade, and employed private armies to enforce production quotas.

During World War II, the railroad temporarily profited from a resurgence of Brazilian rubber exports when America and its allies could not obtain rubber from Japanese-controlled Far East sources. Today, the Madeira-Mamoré Railway is largely abandoned. At Porto Velho, less than five miles of track remain intact for running an occasional tourist train. A few vestiges of the railroad and the region retreated into somnolence. The international banking system was disrupted and Farquhar lost his financial leverage. His investors saw their South American railroads holdings evaporate. By October 1914, Farquhar’s numerous enterprises had gone into receivership. Control of the railroad passed to a British consortium. In 1919, after the war had ended the over-confident Farquhar returned to South America to organize the steel industry in Brazil. He died in 1953 of Parkinson’s Disease at age 89.

The Madeira-Mamoré Railway never recovered from the collapse of the rubber monopoly in 1914. It limped along carrying local freight and passengers, and the region retreated to somnolence.
Railroads can carry anything

You wouldn’t want to see this load in the next lane on the Interstate! Fifteen flat cars in the middle of a mixed goods freight train are carrying 80-foot-long pipes to a gas pipeline site. The three-layer stacks of pipe are held in place by stout steel bands.

Flat cars can range from 65 to 106 feet long; the longer flat cars require articulated wheel sets at each end of the car to get through curves. Very heavy and very tall loads are carried in depressed center flat cars to get under bridges and overpasses.

Whack ‘Em Chocks
Railroad wheel chocks with reinforced handles. If the chock gets stuck under the wheel you can hit it with a hammer without bending the handles. Ask for the “Red-Handle Chock.”

Stay Clear Chocks
Keep your head and hands away from the rail car when placing wheel chocks. Handle length 44”.

Magnetic-Base Holder
Just plunk it down on any rail surface — exposed or flush rail. Rare-earth magnets hold sign in place ... even in a high wind. Wt. 7 lbs.

Leverage When You Need It

HATCH KEY™ Pry Bar for covered hopper car hatches. Pops open frozen hatches.

EASY THROW switch handle replaces heavy ball handle. Loop handle gives multiple hand grips.

Tank car pry bar. Much better than a crow bar.

A Truly Clear Switch Target

Switch Cube™ Indicator. See at a glance how the switch points are lined. Fits all switch stand models.

A Truly Clear Clearance Marker
Don’t foul the switch when shoving freight car in a siding. Bright yellow cone marker (for exposed rail) and slab marker (for flush rail) bolts to tie or to paving.

A Truly Portable Derail

Sabertooth™ Portable Derail weighs only 35 lbs. No wrenches needed to install. Safety hook bites into tie to keep derail from sliding.

A more efficient way to secure a replacement tie for re-spiking. Takes the place of old-fashioned nipping bars. Grab tongs, operated by a hand crank, pull tie up against rail base so rail can be spiked firmly.

Walk-In Wheel Block
Walk-In Wheel Block. Keep hands and body clear of trailer when placing aluminum wheel block under tire. Chock sign is more visible to driver in truck cab.

Pop-Ups

MOUSE TRAP. Foot operated, spring loaded sign holder. Step on pedal, sign goes up. Step on pedal again, sign falls down.

EASY THROW switch handle replaces heavy ball handle. Loop handle gives multiple hand grips.

A Truly Clear Clearance Marker

Sawing the derail block and derail sign will go up or come down automatically. Ensures that sign will properly reflect the position of the derail on or off the rail.

TAKE THIS JOB AND — make it easier!

Aldon products to make the work go smoother, with less strain, and more productivity

See short video clip for products with a **red box** around image: www.aldoninfo.com/videos.